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Two-dimensional natural convection in water with density inversion is studied numerically 
in a rectangular cavity. The non-Boussinesq parabolic density-temperature relationship is 
incorporated in a finite element model. Numerical results are obtained for Rayleigh 
numbers up to 10 s. The evolution of the temperature field and flow pattern show that 
density inversion and initial location of the maximum density surface within the liquid 
have a determining effect on convection character. The investigation of aspect ratio on 
flow character iselso presented. It is found that interactive convection across the density 
inversion surface is dependent on aspect ratio and Rayleigh number. 
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I n t r o d u c t i o n  

In studies of buoyancy-induced flows, Boussinesq approxima- 
tion is commonly used to simplify flow models. This 
approximation consists of two parts: (1) varying thermo- 
physical properties are neglected in the governing equations 
for density in the momentum equation for the vertical direction. 
(2) The density is a linear function of temperature. Conditions 
are non-Boussinesq if one of these conditions is violated. It is 
known that some fluids exhibit density inversion behavior in 
specific temperature ranges. Close to these density maxima the 
density changes in a nonlinear parabolic fashion. These systems 
develop convective flow for any direction of the temperature 
gradient. A common example is water which possesses a 
maximum density of 3.98°C under standard conditions. Other 
examples are liquid helium, which has a density inversion at 
about 2.18 K (Walden and Ahlers, 1981), and the pseudohinary 
electronic alloy Hgl_~CdxTe with an inversion at 1,028 K 
(Chandra and Holland 1983). 

The studies of density inversion have been associated with 
two topics: (1) Rayleigh-B6nard instability and (2) natural 
convection. In the first class of problems a fluid is subjected to 
vertical temperature gradients. At a critical Rayleigh number, 
convection (often referred to as "penetrative convection") 
develops in the unstable lower layer and extends into the stable 
upper layer (e.g., Merker et al. 1973; Moore and Weiss 1973; 
Mnsman 1968; Robillard and Vasseur 1981; Veronis, 1963). In 
the second class, a fluid is contained within an enclosure where 
two adjacent vertical walls are at different temperature. Natural 
convection is thus generated at the cold and hot vertical walls. 
This study concentrates on the second class of problems. 

Watson (1972) analyzed the effect of density inversion on the 
fluid flow and heat transfer in a square vessel. In his study, the 

Rayleigh number was restricted to Ra < 2 x 104. The results 
showed that the inversion effect is maximized when AT = 8°C. 
The effect of temperature-dependent viscosity was also 
investigated. It was found that though the fluid viscosity can 
change by 20 percent at the temperature range of 0-8°C, the 
influence of variable viscosity on the flow character is rather 
small. Seki et al. (1978) investigated natural convection both 
numerically and experimentally in rectangular vessels. The cold 
vertical wall was maintained at 0°C, and the hot wall 
temperature was varied from 1-12°C. Their experimental and 
numerical results of flow pattern and temperature distribution 
were found to be in good agreement for AT < 8°C and A = 5, 
and in fair agreement for AT = 10°C. More recently, Lin and 
Nansteel (1987) investigated natural convection in a square 
enclosure containing water near its density maximum. In their 
study the multicellular flow structures were observed for certain 
ranges of the density distribution parameter, which is 
independent of the value of Rayleigh number. 

The present work expands on the previous studies of natural 
convection in water with density inversion confined to a 
rectangular two-dimensional (2-D) cavity. By setting the 
temperature of the left wall to 0°C and varying the temperature 
at the right wall higher than 3.98°C, the vertical plane of the 
maximum density surface occurs inside the fiqnid volume. A 
parabolic density profile is incorporated in the finite element 
model. Two vertically separated liquid layers are created: the 
left layer with a positive density gradient in horizontal 
direction, and the right-side layer with a negative density 
gradient. Natural convection rolls of opposite vorticity develop 
in both layers, when for linear density profile only one roll 
develops. With a parabolic density correlation the governing 
equations become highly nonlinear. The case studies range 
from Rayleigh numbers 103-106. 
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Mathematical formulation 

The configuration of interest is illustrated in Figure 1. A 
rectangular cavity of aspect ratio A = H/L is filled with water 
and differentially heated from two vertical sides. The top and 
bottom surfaces are adiabatic. The flow is assumed to be 
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Figure f Schematic of the flow configuration 

laminar, steady, incompressible, and 2-D. The parabolic 
density-temperature relationship is given as 

---P = 1 .0 -  y ( T -  To) z (1) 
Po 
where y = 8.0 x 10 -6 (°C) -2 and Po is the maximum density 
at the temperature To-= 3.98°C. This correlation has been 
widely used in studies of density inversion problems (Moore 
and Weiss 1973; Musman 1968; Tien 1968). Though there are 
several models to cover wider temperature ranges for the 
density-temperature behavior (e.g., Gebhart and Mollcndorf 
1978; Sun et al., 1969), the relative difference between these 
models is found negligibly small (<0.01%) for the temperature 
range of 0-12°C. 

Two case studies were performed. The first case excludes 
density inversion, and the maximum density coincides with the 
hot wall (Th----3.98°C). These calculations provide detailed 
information on the evolution of the temperature field and 
convective roll cell pattern with increasing Rayleigh number. 
The second case includes density inversion within the bulk of 
the liquid by maintaining T= = 0°C and varying Th (3.98°C < 
T h < 12°C). This condition positions the maximum density 
plane within the liquid. Two regions develop with two counter- 
rotating rolls of opposite vortieity. 

The governing equations, expressing conservation of mass, 
momentum, and energy, based on the assumption of constant 
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fluid properties except for the density in the body force term, 
are nondimensionalized using the following variables: 

x y 
X =  " Y = -  

L L 

a T - T o  
U = - -  ; 0 = - -  (2) 

AT ,/ Pr 

P 
P =  

Pr 

where AT = T h -  T~, U = {U, V} the velocity vector. The 
Rayleigh and Prandtl number are defined as 

Ra = ay(AT)ZL~ (3) 
~XV 

P 
Pr = - (4) 

= 

Note that the Rayleigh number is based on the horizontal 
temperature difference (AT) 2 and ?(°C-Z), rather than AT and 
p (°C -1) as in traditional cases. In this study, the Prandtl 
number is calculated at T = 3.98°C and therefore fixed at 
Pr = 11.57. Thus, for a fixed temperature difference, the 
Rayleigh number is varied by modifying the cavity width, L. It 
has been reported (FIDAP, 1990) that the preceding setting is 
most advantageous in numerical simulations for strongly 
coupled flows. 

The resulting steady-state dimensionless equations are 
expressed as 

v .  u = 0 (5) 

X ~ r  (u .  vU) = _ v p  + v2u  - X/~a 02e (6) 

x ~  Pr (IT" V0) = V20 (7) 

where e is the vertical unit vector in the negative 
Y-coordinate. From Equation 6, it can be seen that the 
buoyancy effect is characterized by the ratio Ra/Pr, i.e., the 
Grashof number. 

N o t a t i o n  
A 
g 
h 
H 
k 
L 
Nu 
P 
P 
Pr 
Ra 
T 
To 
AT 
U 

U 
U,V 

Aspect ratio, A = H/L 
Gravitational acceleration 
Heat.transfer coefficient 
Cavity height 
Thermal conductivity 
Cavity width 
Nusselt number 
Pressure 
Dimensionless pressure 
Prandtl number 
Rayleigh number 
Temperature 
Temperature at maximum density Pc 
Temperature difference, Th - -  T~ 
Velocity vector, u = {u, v} 
Dimensionless velocity vector, U -- {U, V} 
Dimensionless velocities in x and y coordinates 

x, y Coordinates 
X, Y Dimensionless coordinates 

Greek symbols 
= Thermal diffusivity 
0 Dimensionless temperature 
/~ Dynamic viscosity 
v Kinematic viscosity 
p Density 
Po Maximum density 

Stream function 
~P Dimensionless stream function 

Subscripts 
c Cold 
h Hot 
l Liquid 
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The governing Equations 5-7 are subjected to no-slip 
boundary conditions at all solid walls, and constant 
temperature and adiabatic conditions apply, respectively, at 
vertical and horizontal walls: 

U = 0;0 = Oh at X = 0 

U = 0 ; 0  = 0cat X = 1 (8) 

~0 Oat Y=O,A U = O ; o y  

It is to be noted that the position of the top boundary is 
based on the aspect ratio. Initially the aspect ratio is set to 1.0. 
The effect of aspect ratio on the temperature and convective 
fields will be addressed separately. 

N u m e r i c a l  s o l u t i o n  p r o c e d u r e  

The nonlinear governing Equations 5-7 were discretized using 
a finite-element procedure (FIDAP, 1990). The code FIDAP is 
based on the Galerkin formulation. 

One contribution of this article is the description of the 
parabolic density profile (Equation 1) with FIDAP. Nonuni- 
form nine-node quadrilateral elements were employed for the 
discretization of temperature and velocity. To obtain accurate 
results for the sharply varying flow variables in near-wall 
regions, a fine staggered mesh was used. 

To study the effect of the grid size on the solutions, a series 
of calculations were performed by varying the number of grid 
points in each direction. The results of the grid point 
independence study are given in Table 1. For A = 1, it was 
found that at Ra = 5 x 104 the average Nusselt number 
changes less than 0.05 percent as the grid point varies from 
43 x 43 (21 x 21 element meshes) to 55 x 55 (27 x 27 element 
meshes). At Ra = 105 the change is still less than 0.09 percent. 
Therefore, 43 x 43 grid points are considered optimal for this 
study. For the cases A # 1, the grid point was adjusted 
according to A values. Table 5 lists the optimal number of grid 
points employed for different values of A. 

Convergence of the numerical calculations is achieved 
whenever the following criteria are satisfied: 

I1", - " , -  111 10 -4 (9) 
II " , -  ~ll 

[IR(,l)ll 
< 10 -4 (10) 

[IRoll 

where II" [[ is the Euclidean norm and ui is the solution 
vector and R(ut) is the residual vector (i indicates the ithr 
iteration). Because both Ant and R(n) tend to zero near the real 
solution, a combination of these two criteria provides a.  
sufficient and effective overall convergence criterion for all 
possible situations. 

Nonlinear solutions were obtained by using the combination 
of two iterative methods, Successive Substitution (SS) and 

Table I Grid point independence study for AT ffi 12°C 

Grid Re R'G Re R'u 

11 x 11 5 x 104 2.8062 105 3.5566 
21 x 21 2.6916 3.3440 
35 x 35 2.6744 3.3092 
43 x 43 2.6722 3.3045 
55 × 55 2.6709 3.3016 

T~ble 2 Comparison of Nusselt number for T h = T O (without 
density inversion) 

Ra 
Lin & Nansteel de Vahl Davis This Study 

21 x 21-41 × 41 41 x 41 43 x 43 
- -  uniform nonuniform 

103 1.118 1.116 1.119 
104 2.278 2.234 2.274 
105 4.709 4.487 4.717 
10 e 9.195 8.811 9.270 

Newton~Raphson (NR). The solution procedure used in this 
analysis was to start at each Rayleigh number (taken as the 
loading parameter) with 2 or 3 iterations of the SS method 
followed by 5 to 40 additional iterations of the NR method. 
The strategy of using the slower but more robust SS-method 
in the early phase of the calculations was to bring the solution 
within the radius of convergence of the faster converging NR 
method. 

It was found that in some cases obtaining converged 
solutions becomes very difficult. This difficulty results from the 
application of the conventional Galerkin finite element method, 
which uses centered differences in the convection term. This 
causes oscillatory behavior (wiggles) of velocity or any other 
flow variable (Sohn 1988). The common ways to eliminate 
wiggles are (1) by mesh refinement in the computational 
domain and (2) by applying a stream upwinding scheme 
(balancing tensor diffusivity type). In the present study, both 
methods are applied. 

R e s u l t s  a n d  d i s c u s s i o n  

Evolution of temperature field and convective f low 
pattern 

The results of temperature and convective flow fields are 
presented in the form of isotherm and streamline contour plots. 
The dimensionless stream function, ~ ,  is obtained from velocity 
field solutions by evaluating 

= f~  U dY (11) 

along constant X-coordinate lines and • = ~/[~(Ra Pr)l/2"l. 
To gain confidence in the algorithm, the simulation of 

natural convection is first performed without density inversion 
by setting T~ = To (Figure 1). Thus, density becomes a 
monotonic (but still parabolic) function of temperature and 
~p/ax < 0. Then Th > To were studied to include a parabolic 
density profile. The computational results are compared with 
available solutions by  Lin and Nansteel (1987) for convection 
including density inversion influence and those by de Vahl 
Davis (1983) for regular natural convection without density 
inversion. Though Lin and Nansteel (1987) employed a 
different density-temperature model than tu~d in this study, the 
ditferences between both results are less than 0.9 percent for all 
Raylcigh numbers (Table 2). De Vahl Davis's solutions are 
referenced for two reasons: (1) This study considers a Prandtl 
number of 11.57 (for water), and de Vahl Davis considers 
Pr = 0.73 (for air). (2) This study uses a nonlinear density 
temperature correlation, and de Vahl Davis uses a linear 
correlation. The comparison between de Vahl Davis and this 
study demonstrates that the influence of small Prandtl number 
variations and nonlinear density functions become significant 
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Table 3 Numerical results at various Ra and AT in square cavities 
(A = 1 ) with 43 x 43 nodes 

Ra AT R-u ~Fm,x I~mi.I Urnax(@ node 4(=) 
(°C) ( x 10 s) ( x 10 s) 

3.98 1.119 11.032 0 0.039 (@ 1398) 
103 8.0 1.001 1.136 1.206 0.008 (@ 925) 

12.0 1.01 7 0.025 4.374 0.018 (@ 409) 

3.98 2.274 15.318 0 0.064 (@ 1484) 
104 8.0 1.066 3.451 3.749 0.025 (@ 926) 

12.0 1.581 0.107 9.527 0.039 (@ 366) 

3.98 4.717 10.474 0 0.073 (@ 1613) 
105 8.0 2.005 4,909 5.364 0.040 (@ 928) 

12.0 3.305 0.603 8.344 0.049 (@ 281 ) 

3.98 9.270 6.071 0 0.075 (@ 1700) 
105 8.0 4.120 5.601 5.645 0.057 (@ 927) 

12.0 6.516 1.816 5.228 0.053 (@ 196) 

Note: The node is counted from the left to the right and from the 
bottom to the top. 
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Figure 2 Evolution of the temperature field (left column) and 
convective flow pattern (right column) for AT = 3.98oc without 
density inversion. Dark lines represent the higher 0 and ~I' values 
(FIDAP-plot routine feature) 
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Figure 3 Evolution of the temperature field (left column) and 
convective flow pattern (right column) for AT = 8°C 

only at large Rayleigh numbers (but still less than 5 percent in 
our study range). 

The contours of stream function W and temperature O, for 
AT = 3.98°C, are given in Figure 2 at various Rayleigh 
numbers. From this figure, unicellular flow is seen to be 
generated from the cold wall. As Ra increases the temperature 
gradients near the top of the left (hot) wall and the bottom of 
the right (cold) wall become large, and the convective roll cell 
in the cavity develops internal return flow (Ra = 105 and 106). 

When AT is set to 8°C (i.e., Th = 8°C), the maximum density 
surface is very close to the central vertical plane of the cavity. 
Convection starts as a counterrotating pair of roll cells 
separated by the density inversion plane (Figure 3). The vortex 
adjacent to the cold wall is moving counterclockwise with 
positive W values. The density maximum surface separates the 
two roll cells; no penetration of one convection cell across the 
density inversion plane is observed. The density inversion plane 
acts like a liquid-liquid interface, although the liquids are 
totally miscible. Both layers behave like two immiscible liquid 
layers with perfect viscous and thermal coupling and without 
interfacial forces. In all cases, convective flow retains 
approximate symmetry with respect to the vertical centerline. 

In the case of AT = T h = 12°C (Figure 4) the density 
inversion plane, which is included in the vorticity plot, is shifted 
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Figure 4 Evolution of the temperature field (left column) and 
convective flow pattern (right column) for AT = 12°C 

toward the right cold wall. Single roll convection now 
penetrates across the density inversion plane as visualized in 
the flow patterns into which the 0 = 0 line is transposed. The 
right comer regions show no or extremely weak flow. This 
single roll cell pattern remains until much higher Rayleigh 
numbers are imposed. The density inversion plane, however, 
becomes deformed, and the no-flow region in the lower comer 
becomes larger, whereas the upper comer region becomes 
smaller. At sufficiently high Rayleigh number a small 
counterrotating second roll cell develops in the lower cold 
comer and acquires substantial strength at very high Ra. The 
roll fills up almost the whole region up to the density inversion 
plane. Within the limits of our calculations, however, the 
second roll remains much smaller than the first roll at the hot 
side of the cavity. The calculated results for various AT values 
are summarized in Table 3. 

Table 4 C and m values in equation (17) 

AT C m 

3.98 0.16O 0.294 
8.0 0.078 0.283 

12.0 0.111 0.294 

Heat transfer at  vertical wal ls 

Local and average Nnsselt number profiles play an important 
role in the analysis of heat transfer mechanism. The local 
heat-transfer rates at the horizontal rigid walls can be expressed 
in terms of the local Nusselt number, defined by 

hL 
Nu = - -  (12) 

kl 

where 

k~ aT 
h = ~ l ~ x  ix=o,x=L (13) 

In terms of nondimensional variables, the local Nusselt 
number can also be expressed at 

Nu = I~-Ix=o,x=,  (14) 

The average Nusselt number for a vertical wall is obtained 
by integrating the local Nusselt number in the Y-direction to 
yield, e.g., for X = 0 

=-1 fn ~ oo dY 
Nu A _ v  ~ x=o 

(15) 

The distributions of the local and average Nusselt number 
along the hot and cold walls for AT = T~ = 3.98°C, 8°C, and 
12°C are illustrated in Figures 5-7, respectively. The average 
Nusseit number across the cavity and at each sidewall is 
constant in all cases and increasing with Ra. 

At small temperature difference (e.g, AT = 3.98°C in Figure 
5) it can be seen that the heat transfer rate reaches its maximum 
at the bottom of the cold wall and decreases in Y-direction as 
the fluid rises along the cold wall. At the hot wall the water 
descends, and the horizontal heat transfer decreases from top to 
bottom. This is valid for all Rayleigh numbers. The local heat 
transfer exhibits a remarkable symmetry with respect to the 
Y = 0.5 line. 

At AT = 8°C (Figure 6) the flow is upward at both sidewalls, 
and downflow is in the center. The horizontal heat transfer is 
highest at the bottom of the cavity and lowest at the top. For 
all Rayleigh numbers, two convective roll cells have 
approximately equal size (see Figure 3) because of the slight 
asymmetry of the density with respect to the vertical centerline. 
For the perfect symmetry case (AT = 7.96°C), both carves of 
local Nusselt number at the cold and hot surfaces are identical. 

At high temperature differences (Figure 7) the local heat 
transfer varies strongly with height. This dependence is different 
at both cold and hot sidewalls. Although the symmetry at low 
Ra is moderate, symmetry is broken at higher Rayleigh 
numbers. At Ra = 10 e, because of the development of the 
vortex adjacent to the cold wall the local Nusselt number first 
decreases and then increases along the positive Y-axis; the 
crossing point is found at Y = 0.40. 

Figure 8 shows the effects of Rayleigh number and 
temperature difference on average Nusselt number. All curves 
start at Nu = 1 when Ra is small. Then, increasing the Rayleigh 
number leads to an increase in Nusselt number for all AT cases. 
According to the value of the beat- t ran~r  rate, two ranges of 
each curve can be identified: (1) At lower Rayleigh number, the 
average Nusselt number i nc rea~  moderately with Ra. (2) As 
Ra continues to increase the slope of the curve soon gets larger 
and remains constant. 

From Figure 8 it can be seen that for the monotonic density 
case (AT = 3.98°C) with single convective roll cell the total heat 
transfer rate is highest. At AT = 8°C, with one pair of 
counterrotating convective roll cells, the heat-transfer rate is 
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Figure 5 Distributions of local Nusselt number on hot and cold surfaces for AT = 3.98°C 

25 

minimized. The explicit minimum is reached at AT---2To 
(7.96°C). As the temperature difference reaches 12°C, the curve 
shifts upward again as the effect of density inversion becomes 
weaker. This behavior substantiates results presented in the 
previous section. Furthermore, Figure 8 shows good agreement 
with Lin and Nansteel (1987). 

In analyzing and modeling heat-transfer problems, it is most 
desirable to provide mean Nu(Ra) correlations. For the case of 
A - 1.0, two correlations can be derived as 

N--"u ~ 1 Ra ~ 103 (16) 

N"-u --  C Ra"  103 < R a  < 10 e (17) 

Unlike in convection problems without density inverdon, the 
coefficient C is not a constant but a function of the temperature 
difference (d. Table 4~ This is because the position of the 
maximum density plane in the liquid varies directly with AT 

to influence the heat-transfer rate. These correlations are 
consistent with those of Lin and Nansteel (1987) for 
non-Boussiuesq fluids (m -- 0.30) and with those of Emery and 
Chu (1965) for Boussinesq fluids (m == 0.25). 

Vertical ve loc iw  prof i le  

Variations of vertical velocity at Y = 0.5 are analyzed. For the 
A T =  3.98°C case, the velocity varies sinnsoidally along 
Y = 0.5 fine at lower Ra. Increa~ng Ra results in typical 
boundary layer flow at the side walla The velocity profiles at 
AT== 8°C reflect the symnmJry of the flow pattern. With the 
density maximum closer to the cold wall (Figure 9) the velocity 
profile is nonsymmetric. The boundary layer flow is mainly 
developed near the hot wall. At highest Ra the flow in the core 
region is minimiT~l, and boundary layer flow adjacent to the 
cold wall is established. 
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Aspect  rat io effect 

For buoyancy-induced flows in a confined cavity, a most 
important study is the effect of aspect rat io  on convective flow 
characteristics. In the present study, computations have been 
carried out for A = 2.0, 1.0, 0.5, 0.25, and 0.125 with the width 
is held constant. 

Numerical results for AT = 12°C and Ra -- 106 are shown 
in Table 5. From that table it appears that the total heat 
transfer rate reaches a maximum value at A = 1. For 2 > A > 1 
the decrease results from the shear stress at the vertical walls, 
which retards the abrupt changes in the temperature and flow 
fields and in turn, reduces the temperature gradient at the side 
walls. For A < 1, the reduction in heat transfer is directly 
related to the reduction of H, which in turn is proportional to 
the eifective buoyancy force. In the asymptotic case (A < 1) the 
dominant heat transfer mechanism is conduction. Figure I0 

shows that the convective roll cell resulting from the density 
inversion is adjacent to the cold wall at small aspect ratios and 
confined to the lower comer of the cold wall at A > 0.5. In 
accordance with Seki et al. (1978) the heat transfer diminishes 
for increasing A > 1. 

C o n c l u s i o n  

Numerical simulations have been carried out to study natural 
convection in a confined environment that includes density 
inversion. A non-Bonssinesq parabolic density profile was 
included in the numerical FEM scheme. Numerical results 
obtained in the present study demonstrate the ~laifieant dfect 
of demity inversion on the heat-trander and flow patterns in 
an enclosed cavity. It is found that the location of the 
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Figure 8 Effect of Rayleigh number on average Nusselt number at 
various AT values for A = 1 

maximum density within cold water determines the flow 
character and alters the distribution of the local Nusselt 
number at vertical walls. With density inversion, a convective 
flow pattern develops at each side of the surface separated by 
the Y -- 0 plane. Convective heat transfer is reduced because 
of the added resistance between the two  countorrotating cells. 

For a completely symmetric density profile case, the 
maximum density surface (0 = 0) always coincides with the 

Table 5 Numerical results for AT = 12°C and Ra = 10 e at various 
aspect ratio values 

A ~=== I~min[ 
(H/L) Grid 1 ~  ( x l O  3) ( x l O  3) 

2 45 x 55 5.858 5.018 9.191 
1 43 x 43 6.516 1.816 5.228 
0.5 55 x 45 6.266 0.301 2.943 
0.25 65 x 45 2.638 0.275 1.138 
0.125 85 x 45 1.045 0.081 0.187 
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Figure 10. Effect of aspect ratio on the temperature field and 
convective flow pattern for A T  ffi 12°C and Ra = 10 s 

~P = 0 surface; no penetration of a convection ceil across the 
density inversion surface is observed. As soon as the density 
profile symmetry is broken the flow becomes penetrative, and 
one vortex expands at the expense of the other. The velocity 
profile reflects the asymmetry while the local Nusselt number 
changes in a complicated function in vertical direction. The 
aspect ratio study shows that the second roll may either occupy 
a corner of the cavity only in high-aspect ratio containers, or 
expand from bottom to top of the cavity in small-aspect ratio 
containers. The results suggest that the total heat transfer 
reaches its maximum at A = 1. 
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Appendix: 

Conversion of results between the systems 
using different length scales 

In natural convection in a cavity with two differentially 
heated vertical walls, the cavity width in the direction of the 
temperature gradient is often consich~red the characteristic 
length when normalizing the governing equations. However, 
often the cavity height is chosen as the length scale as heating 
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occurs at the vertical walL To compare results from the 
literature that are based on different length scales, it is highly 
desirable to find relations between these two similarity 
definitions. 

With H as characteristic length, Rayleigh number and 
Nusselt number are defined as 

gT(AT)2H 3 
Ra H =- (18) 

hH 
NUll -- ~ (19) 

Thus, the dimensionless average Nusselt number across 
X = 0 becomes 

Natural convection of water: W. Tong and J. N. Koster 

and the dimensionless stream function is expressed as 

IJ U dY (21) 

Comparing the above equations with corresponding equations 
in this study, four relations are found: 

Ra.  = A3RaL (22) 

N---u a = A N'-'U L (23) 

U .  = A-  t/2UL (24) 

tI/H = A - 3/2t]/L (25)  

where A = H/L. These equations have been applied in this 
study to compare with other authors' results. 
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